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Stereospecific Si-C coupling and remote control
of axial chirality by enantioselective palladium-
catalyzed hydrosilylation of maleimides
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Ke-Fang Yang 1 & Li-Wen Xu 1,2✉

Hydrosilylation of unsaturated carbon-carbon bonds with hydrosilanes is a very important

process to access organosilicon compounds and ranks as one of the most fundamental

reactions in organic chemistry. However, catalytic asymmetric hydrosilylation of activated

alkenes and internal alkenes has proven elusive, due to competing reduction of carbon-

carbon double bond or isomerization processes. Herein, we report a highly enantioselective

Si-C coupling by hydrosilylation of carbonyl-activated alkenes using a palladium catalyst with

a chiral TADDOL-derived phosphoramidite ligand, which inhibits O-hydrosilylation/olefin

reduction. The stereospecific Si-C coupling/hydrosilylation of maleimides affords a series of

silyl succinimides with up to 99% yield, >99:1 diastereoselectivity and >99:1 enantioselec-

tivity. The high degree of stereoselectivity exerts remote control of axial chirality, leading to

functionalized, axially chiral succinimides which are versatile building blocks. The product

utility is highlighted by the enantioselective construction of N-heterocycles bearing up to

three stereocenters.
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S ilicon–carbon bond-forming reactions, including C–H/C–X
silylation, hydrosilylation, and cross-exchange of Si–C
bond, have been considered as the key topic and corner-

stone of organosilicon chemistry and of great value in organic
synthesis and functional materials1–7. However, the stereospecific
construction of Si–C bond remains challenging and under-
exploited, thereby preventing the enantioselective functionalisation
of organosilicon compounds and downstream transformations.
Here, we reported a highly enantioselective Si–C coupling hydro-
silylation of carbonyl-activated alkenes using palladium catalysis
with chiral TADDOL-derived phosphoramidite ligand, which
inhibited previously common O-hydrosilylation/reduction of
carbon–carbon double bond. This was proved in the enantiose-
lective hydrosilylation in maleimides as well as the remote control
of axial chirality of N-arylmaleimides via a single-step transfor-
mation. The products could be obtained in up to 99% yield, >99:1
diastereomeric ratio (for axial chirality) and >99:1 enantiomeric
ratio. On the basis of experimental results, we elucidated the
mechanistic details and the utility of the approach in synthetic
chemistry and photocatalysis that was highlighted by the enan-
tioselective construction of chiral N-heterocycles bearing one to
three carbon-stereogenic centres.

Notably, hydrosilylation of unsaturated carbon–carbon bonds
with hydrosilanes ranks one of the most fundamental reactions in
industrial chemical production8–14, such as the production of
coupling silane and silicone rubber15. And recently it has become
a very important process to access synthetically useful organosi-
licon compounds and chiral organosilanes16–18 that are useful in
asymmetric catalysis, functional materials, and can be employed
as silicon-containing drug candidates. However, chiral silanes
with functional groups are still difficult to be constructed via Si–C
coupling due to the scarcity of highly enantioselective or broadly
applicable methods. This limitation might discourage the pursuit
of bioactive organosilicon compounds as drug candidates or
chiral Si-based materials19–21, despite functionalized silanes are
exceptionally important for industrial processes or modern
material technology across a wide range of disciplines. To date,
asymmetric hydrosilylation is one of the core Si–C coupling
transformations for the construction of chiral silanes. Very
recently, several well-established protocols have been developed
to the enantioselective hydrosilylation of terminal alkenes and
alkynes for the synthesis of chiral organosilicon compounds with
good regio- and enantioselectivities (Fig. 1a)22–29, which has been
recognised as a hot topic in organic synthesis in the past years. In
contrast, the enantioselective hydrosilylation of internal alkenes
or its analogues are uncommon, and the synthetic capabilities for
the catalytic asymmetric hydrosilylation of activated alkenes are
also presently limited30,31. Catalytic asymmetric hydrosilylation
of activated alkenes and internal alkenes have been proven elu-
sive, because the reduction of carbon–carbon double bond or
isomerization is much less energetically favourable. For example,
the hydrosilylation of EWG-activated alkenes may generate
mixtures of reductive product, α- and β-adducts, and especially
for α,β-unsaturated carbonyl compounds, silyl ketene acetals (O-
silylation adduct with 1,4-addition), silyl ethers/amines (O-sily-
lation adduct with 1,2-addition), and polymeric byproducts were
also obtained depending on the catalyst systems (Fig. 1b)32–34.
Although there have been much efforts made to achieve chemo-
or regio-selective hydrosilylation of α,β-unsaturated carbonyl
compounds, only a few examples of Si–C coupling C-silylation
are known35–37, and no successful report has been published on
the enantioselective Si–C coupling hydrosilylation of α,β-unsa-
turated carbonyl compounds, to the best of our knowledge.

Because of the abundance and potentially bioactivity of imide/
amide-containing nature products, maleimide and its derivatives
are versatile building blocks for synthetic chemistry and functional

materials38–41, allowing for subsequent transformations of skeletal
variation and investigation as drug candidates42. However, in
contrast to the hydrosilylation of general electron-rich alkenes/
alkynes, the synthetic power of hydrosilylation of electron-deficient
alkenes, including maleimide, has not fully established43, 44 this
stereoselectivity for Si–C coupling silylation of α,β-unsaturated
carbonyl compounds has not been challenged. First, catalytic
hydrosilylation of α,β-unsaturated carbonyl compounds usually
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Fig. 1 Chemo- and stereo-selective issues with hydrosilylation. a Catalytic
asymmetric hydrosilylation of terminal alkenes mediated by transition-
metal catalysts. b Traditional methods for hydrosilylation of EWG-activated
alkenes led to reduction and O-silylation. c Two classic pathways for
transition-metal-catalysed hydrosilylation of alkenes, and its mechanistic
analysis should encourage greater adoption of Si–C coupling methods for
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mechanism.
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affords solely a conjugated reduction product, thus a catalyst
system should be identified to overcome the expected reductive
hydrosilylation. Second, the α,β-unsaturated carbonyl compounds
containing functional carbonyl group, the catalyst must be cap-
able of good group tolerance as well as effective control of
enantioselectivity. In addition, for more than 30 years, especially
after Hayashi’s milestone discovery that Pd–MOP complexes
catalysed Markovnikov-type asymmetric hydrosilylation with
trichlorosilane45, 46, the selectivity of palladium-catalysed Si–C
coupling hydrosilylation of α,β-unsaturated carbonyl compounds
has not been well established. Thus, this challenge motivates us
to aim at developing an enantioselective hydrosilylation of mal-
eimides, providing a straightforward approach to a wide range
of silyl-functionalized carbonyl compounds that can enrich the
chiral synthesis toolbox with distinct chemo- and stereo-
selelectivity. Based on the analysis of reaction mechanisms for
metal-catalysed hydrosilylation and reduction with hydrosilanes
revealing the potential migratory insertion and ligand-controlled
hydride transfer (Fig. 1c), and inspired by previous reports on the
role of secondary interactions in the asymmetric palladium-
catalysed hydrosilylation of olefins with chiral monophosphine
ligands47, we envisioned that an appropriate ligand with a cavity-
like structure could reverse the chemoselectivity from reduction
to Si–C coupling silylation and might control the enantioselec-
tivity of hydrosilane addition to C=C bond of maleimides.
Therefore, if a chiral ligand bearing a bulky and cavity-like group
as well as displaying suitable secondary interactions could be
beneficial to the formation of a proton shuttle for subsequent
Si–C coupling hydrosilylation, a highly enantioselective hydro-
silylation of EWG-activated alkenes (EWG: electron-withdrawing
group) would be achieved.

Herein, we report our recent efforts to establish a palladium-
catalysed protocol for the catalytic asymmetric hydrosilylation of
maleimides with hydrosilanes to provide silylated carbon ste-
reocenters, with high chemo- and enantioselectivity (Fig. 1d).
Through the asymmetric palladium-catalysed hydrosilylation of
N-arylmaleimides, the remote control of axial chirality of atro-
pisomeric succinimides could be achieved during the Si–C cou-
pling. The key feature of present methodology is the ability of the
palladium catalyst to exert stereochemical induction from func-
tionalisation of C–C double bond to the formation of the remote
C–N axis48, 49 via a single Si–C bond-forming process unlike
previously reported Michael addition50–53 or well-established
cycloaddition54–57. Computational studies reveal the mechanism
of the palladium-catalysed C-silylation and support the unusual
stereoselectivity.

Results
Optimisation of reaction conditions. We first carried out a
model hydrosilylation involving N-phenylmaleimide 1a and the
commercially available diphenylmethylsilane 2a with chiral P-
ligand and Pd2(dba)3·CHCl3. Unfortunately, owing to competi-
tion of reduction and Si–C coupling hydrosilylation, most of
commercially available phosphine ligands, such as 2,2′-bis
(diphenylphosphino)-1,1′-binaphthyl (BINAP), 2-(diphenylpho-
sphino)-2′-methoxy-1,1′-binaphthyl (MOP), and other P-ligands
resulted into reductive products but only with trace amount of
desired products (Entries 14–18 of Table 1). And as expected, it
was found that only chiral TADDOL-derived phosphoramidites
bearing aromatic bulky groups could give low to moderate yields
of desired silyl product 3a in the palladium-catalysed hydro-
silylation of N-phenylmaleimide (Table 1 and Supplementary
Table 1, TADDOL= 1,1,4,4-tetra-aryl-2,3-O-isopropylidene-L-
threitol). In the event, at 60°C and after 18 h the conversion of 1a
was completely and the desired product was obtained in 68% with

94% ee in the presence of chiral TADDOL-derived phosphor-
amidite L12 (Entry 12 of Table 1). These experimental data
showed the steric repulsion of chiral P-ligand inhibit the reduc-
tive O-hydrosilylation. However, small amounts of the side pro-
duct (32% 1-phenyl-pyrrolidine-2,5-dione) were still detected
because of reductive hydrosilylation. The formation of reductive
product implies that the pathway involving Si–C coupling is
accompanied by Si–H activation and subsequent hydrogen-
transfer to Pd–Si bond (Fig. 1c). Under the same conditions but
with other TADDOL-derived phosphoramidites resulted into
decreased chemoselectivities (from 4:96 to 59:41 c.r.) and enan-
tioselectivities (31–93% ee, see entries 1–14 of Table 1). Next, we
examined the effect of palladium catalyst precursors (Supple-
mentary Table 2). In certain cases better chemoselectivity was
generated with the same good enantioselectivity when Pd2(dba)3
as Pd catalyst (85% yield of 3a, 94% ee). Then after an extensive
evaluation of solvents, reaction temperature, and phosphorous
ligands, the Pd2(dba)3/L12 was identified as an effective catalyst
for the model hydrosilylation of N-arylmaleimide in toluene at
50 °C (entry 20 of Table 1, for 3a, 93:7 c.r., 96% ee). Notably,
some of experimental data were unexpected, for example, higher
temperature was beneficial to the Si–C coupling hydrosilylation
but not the reduction (Supplementary Table 4). However, the
reaction performed at higher temperature was sacrificed in term
of stereoselectivity to some extent.

Scope of the palladium-catalysed hydrosilylation of mal-
eimides. We then evaluated a series of maleimides to probe the
reaction scope to generate the synthetic information about the
stereospecific Si–C coupling hydrosilylation (Fig. 2b). Various
maleimides with an aryl unit (1a–1w), whether it is electron-
withdrawing or electron-donating, react efficiently with
hydrosilane 2a to give desired products (3a–3w) in excellent
enantioselectivities (93–99% ees) and moderate to good yields
(up to 99% yield). It should be noted that the coordination
capacity of the Pd–L complex with the activated alkene sub-
strate possibly decreases due to the weakened solubility in the
toluene and unexpected electronic properties of maleimides
that with OR groups, resulting into a decreased yield of cor-
responding products, such as the representative examples of 3d,
3e, and 3g. In addition, it was observed in experiments that the
standard silica gel chromatography purification of the product
led to the formation of succinimides 4 by silica gel promoted
desilylation of the products. More specially, N-unsubstituted
maleimide 1x is also tolerated, which is notable since a NH
group can be proven to be no interference during undergoing
Si–C coupling hydrosilylation, albeit the enantioselectivity is
slightly decreased as 81% ee with 69% yield. In addition, high
efficiency and stereoselectivity was observed with N-alkylma-
leimides (1y–1bb). A substrate bearing an additional N- or S-
heterocycle performed smoothly under the optimised reaction
conditions to deliver the desired product (3cc or 3dd with 84%
yield and 96% ee).

We subsequently examined the possibility of the catalytic
asymmetric hydrosilylation for the remote control of axial
chirality when the N-arylmaleimide substrates bearing bulky
group at ortho-position of aryl unit were used (Fig. 2c). The
influence of bulky substitution on the aryl ring was investigated to
probe the steric effect and it was found that the tert-butyl group
with large B values (about 15.5)58 guaranteed the perfect and
remote control of axial chirality (for 3gg, 99% ee with 99:1 d.r.).
Notably, except 3gg, the atropisomers of mono-substituted N-
arylmaleimide-derived silyl products 3ee–3hh were co-existed in
this protocol, which difficultly affords the pure and single
atropisomer in the palladium-catalysed hydrosilylation.
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Remote control of axial chirality by palladium-catalysed
hydrosilylation. To construct axially chiral N-arylmaleimide
derivatives via catalytic asymmetric hydrosilylation, we envi-
sioned the introduction of two groups on the ortho-position of N-
arylmaleimides to stabilise the atropisomeric chirality during the
remote control by palladium catalyst (Fig. 3a). Steric modification
of one of the substituents on 3hh by an aryl group could counter
racemisation at high temperature. Owing to unexpected effect of
much bulky group on catalytic asymmetric hydrosilylation, the
other concern was also that reductive side-products could form.
Fortunately, no detrimental effects to the chemo- and stereo-
selectivity of this process were observed when biarylmaleimides
were used (Fig. 3b), and all the atropisomeric succinimides 5a–5z
bearing an additional sp3-central chirality that with a high energy
barrier for C–N bond rotation (for example, the energy barrier for
compound 5a is 44.2 kcal/mol, see Supplementary Fig. 10) were
obtained in moderate to high yields (up to 97% yield) and good

enantioselectivities (up to 95% ee) as well as excellent diaster-
eoselectivity (up to >99:1 d.r.). An assortment of easily available
N-arylmaleimides was viable for this stereospecific Si–C coupling
hydrosilylation as well as remote control of axial chirality of C–N
bond. Expanding the substrate scope to investigate hydrosilanes
permitted us to forge other arylsilanes for the catalytic asym-
metric hydrosilylation. For example, the atropisomeric succini-
mides 5v–5y could be also achieved in excellent diastereo- and
enantioselectivity (91-95% ee and 97:3 to >99:1 d.r.). However,
bulky arylsilane that containing t-Bu group on aromatic ring
slowly reacted to form the desired atropisomeric succinimide 5w
under the same reaction conditions, which revealed the steric
repulsion between arylsilane and ortho-substituted N-arylmalei-
mide is not inconsiderable. Lastly, a benzofuran-containing N-
arylmaleimide was also successfully Si–C coupling to generate the
desired silyl atropisomer in 87% yield and 95% ee. Notably, the
absolute configuration of the atropisomeric succinimide (P,S)-5f

Table 1 Optimisation of reaction conditionsa.

Entry Ligand Conversion (%)b 3a/4ab ee% of 3ac Entry Ligand Conversion (%)b 3a/4ab ee% of 3ac

1 L1 97 25:75 70 14 L14 14 <1:99 ND
2 L2 95 17:83 69 15 L15 >99 <1:99 ND
3 L3 >99 30:70 68 16 L16 28 <1:99 ND
4 L4 >99 29:71 76 17 L17 29 <1:99 ND
5 L5 trace ND ND 18 L18 >99 <1:99 ND
6 L6 >99 8:92 62 Entry Solventd Conversion (%) 3a/4ab ee% of 3ac

7 L7 >99 59:41 79
8 L8 93 50:50 79 19 Dioxane 99 67:32 92
9 L9 >99 41:59 93 20e Toluene >99 93:7 96
10 L10 90 4.5:95.5 91 21 Et2O >99 33:67 92
11 L11 >99 4:96 86 22 DCE >99 85:15 94
12 L12 >99 68:32 94 23 THF >99 4:96 70
13 L13 95 4:96 31 24 DCM >99 96:4 93

aAll the reactions were run on a 0.1 mmol scale in 1.0 mL DCE (entries 1–13) or toluene (entries 14-18) at 60 °C for 18 h.
bDetermined by 1H NMR using dibromomethane as an internal standard.
cDetermined by chiral HPLC.
dThe reactions were performed with Pd2(dba)3 and ligand L12.
eThe reaction temperature is 50 °C.
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was suitable for the determination of the remote control of axial
chirality as P through X-ray crystallography analysis.

Downstream transformations of enantiomerically enriched
silyl succinimides. To demonstrate the practicability of the cat-
alytic asymmetric hydrosilylation, we carried out gram-scale
reaction for the model transformation of 1a (Fig. 4a), which
offered the same high enantiomeric excess (ee) compared with the

small-scale process. Then, the enantiomerically enriched silyl
succinimides can be converted to pyrrolidine and its derivatives,
and the silyl group could be acted as a removable placeholder or
masked auxiliary in these transformations. Synthesis of chiral N-
aryl amino alcohol 7 under the Fleming–Tamao’s oxidation
conditions59 showed the Si-linked sp3 central chirality can be
retained with high ee value (96% ee). This transformation offers
an attractive entry for synthesis of chiral amino alcohols that
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could be used as precursors to biologically active molecules. In
contrast, the oxidation of silyl succinimides 3 under the same
reaction conditions, the desilylation product, 1-phenyl-pyrroli-
dine-2,5-dione, was formed exclusively. Recent progress on the
radical cation-induced cyclisation of simple N-arylpyrrolidine
with iodonium ylides leading to a broad range of indoline deri-
vatives60 inspired us to evaluate the placeholder effect of silyl
group. And as already mentioned in this work, there is no cata-
lytic asymmetric version for the enantioselective synthesis of
indoline derivatives. Under the reported reaction conditions, the
corresponding product 8, containing an additionally carbon-
stereogenic centre, was obtained in good enantioselectivity and
promising diastereoselectivity (Fig. 4b). Unexpectedly, the more
hindered ortho-position to the silyl group and amino group was
the preferential cyclisation site, which is different from that of
generally accepted pathway. The site-selective functionalisation
was ascribed to the β-effect of silicon that featured with the

hyperconjugation stabilisation of the cation intermediate by the
Si–C σ-bond61. Recent reports revealed the powerful potential of
photoredox catalysis in the functionalisation of C–H bond62–65,
which promote us to evaluate the chirality transfer of Si-linked
carbon stereocenter on chiral silyl arylpyrrolidine to stereo-
selective photocatalysed C–H functionalisation. We believed the
chiral silyl group as a masked hydrogen or hydroxyl group plays
important role in the silicon-mediated construction of carbon-
stereogenic centre during photoredox-catalysed C–H functiona-
lisation, providing supplementary method to build chiral mole-
cules that it is a difficult and challenging task in photocatalytic
reaction system66. Considered the importance of photocatalysed
dual C–H bond functionalisation (dehydrogenation/[2+ 2]
cycloaddition) of pyrrolidine that reported by Xu et al.67, we
checked the asymmetric version with chiral N-arylpyrrolidine 6
as starting material under the standard reaction conditions. The
synthetic potential of this process can be supported by the perfect
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chirality transfer (100% ct) that product 9 was obtained in >99:1
d.r. and 96% ee. Therefore, these experiments in Fig. 4b suggested
that one emerging application of placeholder effect of silyl group
is its use in the enantioselective functionalisation of sp3 C–H
bonds via silicon-mediated chirality transfer.

Discussion
To clarify the stereospecific Si–C coupling process by palladium-
catalysed hydrosilylation of maleimides, DFT calculations
revealed that high chemo- and enantioselectivity originates from
the aromatic interaction and steric repulsion caused by chiral
TADDOL-derived phosphoramidite acting with the Pd–Si inter-
mediate’s aryl unit, in turn coordinated with carbon–carbon
double bond of maleimide. In the more favourable pathway (path
A of Supplementary Fig. 8) migratory insertion of an Pd/olefin
hydride complex followed by reductive Si–C coupling (simplified
as Chalk–Harrod mechanism)68, 69. Thus the Si–C coupling
hydrosilylation but not olefin reduction occurred due to the
irreversible β-hydride elimination that inhibited by the steric
repulsion of chiral ligand. And the control experiments with
deuterium labelling studies (KIE) determined the Si–H action is a
key step in this reaction (Supplementary Fig. 3), indicating that

crucial role of bulky P-ligand bearing a large cavity in the
directing migratory insertion of hydride to carbon–carbon double
bond. The formation of H–Pd–Si intermediate within suitable
cavity-type structure as a chiral proton shuttle arose from a
TADDOL-derived phosphoramidite is necessary for the high
enantioselectivity during the stereospecific migratory insertion of
an olefin hydride complex, which could be supported by the 31P
NMR analysis, nonlinear effect, and DFT calculations (Supple-
mentary Figs. 7, 8). In addition, the absolute configuration of the
silyl products 3 or 5 mainly depends on the cavity size of the
ligand, which is determined by the extension direction of the four
aryl groups on TADDOL-derived phosphoramidite L12, espe-
cially two of them. And one of the aryl groups that regulated the
steric hindrance is perpendicular to the maleimide substrate, in
which a chiral wall as an external cavity surface can be formed to
control the stereoselective direction of hydrosilylation of mal-
eimide that is conducive to highly enantioselective addition via
the option of less steric repulsion.

In summary, the stereospecific Si–C coupling hydrosilylation of
maleimides affords a series of silyl succinimides with the aid of
stable and reactive Pd catalyst. Through the development of Pd-
catalysed hydrosilylation, we achieved remote hydrosilylation
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–controlled construction of C–N axial chirality within ortho-
substituted N-arylmaleimides. Owing to the compatibility of
steric repulsion as well as electron-rich and electron-deficient
substituents, this Si–C coupling hydrosilylation reaction provides
a way to diversify synthetically useful intermediates and complex
molecules benefited from the concept of silicon-mediated organic
synthesis.

Methods
General procedure for the palladium-catalysed hydrosilylation. A vial was
charged with N-arylmaleimide 1 (0.3 mmol), Pd2(dba)3 (8.2 mg, 3.0 mol%), (R,R)-
L12 (20.1 mg, 6 mol%), and evacuated under high vacuum and backfilled with N2.
Toluene (3 mL) was added subsequently. The mixture was stirred at 25 °C for
10 min, then the Ph2MeSiH (0.6 mmol) was added to the reaction. The mixture was
stirred at 50 °C in a preheated oil. Upon reaction completion, the mixture was
filtered over a plug of silica gel (washed with 50 ml EtOAc), and the filtrate was
concentrated. The crude was purified by column chromatography to give the
corresponding product.

Full experimental details and the characterisation of compounds 3–8 are
provided in the Supplementary Information.

Data availability
The X-ray crystallographic coordinates for structures reported in this study have been
deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition
numbers 1967248 and 1994220. These data can be obtained free of charge from The
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the data generated and analysed in this study, including the experimental details, spectra
for all unknown compounds, and computational modelling data associated with all of the
tables and figures, see Supplementary Files. All data underlying the findings of this work
are available from the corresponding author upon reasonable request. The source data
underlying Supplementary Figs. 5–8 and 11 are provided as a Source Data file. Source
data are provided with this paper.
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